Comparative overview of climate change and ways to an adaptation strategy in the Rhine and Mekong basins

Dr. Kai Gerlinger

HYDRON Consulting Engineers (Karlsruhe, Germany)

May 9, 2014

Content

- 1. Common knowledge base
- 2. Observed climate changes
- 3. Climate projections
- 4. Projections of IPCC AR5
- 5. Risks projected in IPCC AR5
- 6. Uncertainty and complexity
- 7. Approach to basin-wide adaptation
- 8. Summary

1. Common knowledge base

- Hydrology and climate change are both transboundary subjects
- Transboundary cooperation in the assessment of climate change and its impact on water is desirable

1. Common knowledge base

 Initial transboundary review of existing knowledge on climate change and its impacts on hydrology

4

2. Observed changes

- Climate change is already observable in temperature records
- Increase ranges are similar in the Rhine and Mekong basin (+0.08 to +0.18°C/decade)

Changes of air temperature (average, minima and maxima)

Changes of annual air temperature [°C/decade]

2. Observed changes

- Also sea level rise is already observable
- Climate change is already observable in temperature records, but trends are heterogeneous in time and space
- Heterogeneity represents inherent spatial variability of climate change
- But there are also differences in underlying data basis (e.g. data quality, density of stations, lengths of time series) and methods of analysis
- Changes in precipitation are much more heterogeneous than in temperature
- to keep track of current climate change, transboundary harmonization of data analysis is helpful. Measuring network has to be maintained.

• Climate modelling is applied to assess future climate change

HSG 2012

- Different climate projections exist and have been analyzed for both basins
 - MRR

	Lauri et al. 2012	Laux et al. 2013	Kingston et al. 2011	Thompson et al. 2013	Thompson et al. 2013	Hoanh et al. 2010	TKK & SEA START 2009	Johnston et al. 2009	Eastham et al. 2008	Kiem et al. 2008	Chinvanno et al. 2006	Hoanh et al. 2003	Snidvongs et al 2003
Region	Mekong Basin	GMS	Mekong Basin	Mekong Basin	Mekong Basin	Mekong Basin	LMB	GMS	Mekong Basin	Mekong Basin	LMB	LMB	LMB
^{GC™} to		ss⁵ fu			lte [⊪] cr	fange	e, tra	nsbo	unda	ту ^{бс} СС	oper	ation	CCAM (RCM)
in		elect			ense	mble	of su	uitabl	e clir	nate	proje	ctior	IS
is	desir	able	NCAR CCSM30 UKMO HadGEM1	NCAR CCSM30 UKMO HadGEM1									
Downscaling method	Statistical downscaling	WRF (dynamical downscaling)	ClimGen (pattern-scaled downscaling)	ClimGen (pattern-scaled downscaling)	ClimGen (pattern-scaled downscaling)	PRECIS	PRECIS	PRECIS	Pattern-scaling	-	-	-	-
Scenario	A1B, B1	A1B, B1	Prescribed global warming of +0.5-+6°C	Prescribed global warming of +2°C	Prescribed global warming of +1.0-+6°C	A2, B2	A2, B2	A2, B2	A1B	A1B	540 ppm and 720 ppm	A2, B2	700 ppm
Baseline period	1982-1992	1971-2000	1961-1990	1961-1990	1961-1990	1985-2000	1995 to 2004		1961 -1990	1979–1998	360 ppm	1961-1990	350 ppm
Scenario period	2032-2042	2001-2030 (I) 2021-2050 (II)	-	a .	_	2010-2050	2010-2049	1960-2049	2030	2080-2099	540 ppm (I) 720 ppm (II)	2010-2039 (I) 2070-2099 (II)	700 ppm
Mean temperatur e	+0.8-+1.4°C (A1B) +0.6- +1.3°C (B1)	+0.17°C (B1 I) +0.38°C (A1B I) +0.6°C (B1 II) +1.39°C (A1B II)	+0.5-+6°C (prescribed)	+2°C (prescribed)	+1.0-+6°C (prescribed)	+0.7°C (A2) +0.8°C (B2)	+2-+3°C (+1- +2°C from Västilä et al. 2010, Scenario A2 only)	+0.023°C/yr to +0.024°C/yr	+0.68-+0.81°C	+2.6°C	Slight decrease (I) and increase (II)	+1.0°C (B2 I) +1.0°C (A2 I) +2.9°C (B2 II) +4.0°C (A2 II)	increase in dail max. temperature by +1-+3°C from Jan. to May, decrease from Oct. to Dec.
Vlean vrecipitatio 1	-2.5-+8.6% (A1B) +1.2- +5.8% (B1)	+90mm (B1 I) -5mm (A1B I) +74mm (B1 II) -20mm (A1B II)	only very slight changes, except for three northern basins, where increases occur, seasonal changes are very heterogeneous	heterogeneous changes reaching from - 6.1-+12.3% for different sub- catchments	-2-+5% for different sub- catchments for 1°C-scenario; -6.9-+30.2% for different sub- catchments for 6°C-scenario	annual: +1.2mm/yr (B2) +2.0mm/yr (A2); wet season: +1.2mm/yr (B2) +1.5mm/yr (A2); dry season: +0.06mm/yr (B2) +0.54mm/yr (A2)	+4% (from Västilä et al. 2010, Scenario A2 only)	no significant change in mean annual precipitation, wetter wet season in North Myanmar and Gulf of Thailand, drier dry seasons around Gulf of Thailand	mean: +13.5% range of models: +0.5- +36.0%	+4.2%	mean annual precipitation increases from 0-+25% for different sub- catchments	-0.2% (B2 I) +0.2% (A2 I) +9.4% (B2 II) +9% (A2 II)	drier and longe dry seasons

4. Projections of IPCC AR5

IPCC 2013

4. Projections of IPCC AR5

Central Europe

Temperature change Central Europe annual

South East Asia

Precipitation change Southeast Asia (land) April-September Precipitation change Central Europe October-March 80 80 RCP8.5 RCP8.5 60 60 RCP6.0 RCP4.5 RCP2.6 RCP6.0 60 60 RCP4.5 RCP2.6 40 40 historical historical 40 40 20 20 20 20 ŧ (%) 0 0 0 IPCC 2013 -20 -20 20 -20 -40 -40 40 -40 -60 -60 1950 2000 2050 1900 2100 2081-2100 mean 1900 1950 2000 2050 2100 2081-2100 mean

5. Risks projected in IPCC AR5

Europe K	ey risk	Adaptation issues	s and prospects	Climatic drivers	Timeframe	Risk hi	for curren gh adaptat	t and ion
Increased economic lo by flooding in river ba- increasing urbanisatio sea-levels and increase (high confidence)	sses and people affected sins and coasts, driven by n and by increasing ing peak river discharges ctions. Significant ilability from river groundwater resources, d demands from a range of rgy and industry. domestic	Adaptation can prevent most (high confidence). The experie protection technologies is sig include the high costs for incr demand for land in Europe, at landscape concerns. Proven adaptation potential f technologies and adoption of technologies and of water say crop species, land cover, indus	of the projected damages ence in hard flood nificant. Main issues easing flood protection nd environmental and rom changes in more water efficient <i>v</i> ing strategies (irrigation, stries, domestic use).		Present Near-term (2030-2040) Long-term (2080-2100) 4°C Present Near-term (2030-2040)	Very low Very low	Medium	Very high
use) and to reduced w (as a result of increase (high confidence)	sses and people affected	(to limit fossil fuel demand). Implementation of warning sy	stems, adaptation of	1000	Long-term 2°C (2080-2100) 4°C	Very low	Medium	Very high
by extreme neat event welfare (overheating i productivity, crop proc (medium confidence)	s: impacts on health, n buildings), labour luction, reduced air quality	dwellings and work places, ar infratructure. Reductions in e quality. Improved wild fire ma	nd transport and energy missions to improve air anagement.	"	Present Near-term (2030-2040) Long-term ^{2*C} (2080-2100) _{4°C}			//
	Risk & potential for adaptation							
Warming trend	Extreme temperature	Extreme precipitation	Damaging cyclone	Sea level	t Risk level wi	to rec	radaptation ducerisk f Risk level with current aclan	tation
Warming trend Modified from IPCC :	temperature	precipitation	cyclone	Sea level	Risk level wi high adapta	th ation	Risk level with current adap	tati

Asia Key risk	Adapt	Adaptation issues and prospects				Climatic drivers		Timeframe Risk for curre high adapta		t and tion
Increased risk of crop failure and lower crop production could lead to food insecurity in Asia (medium confidence)) ****	Present Near-term (2030-2040) Long-term (2080-2100) 4°C	Very low	Medium	Very high
Increased flooding leading to widespread damage to infrastructure and settlements in Asia (<i>medium confidence</i>)	Increased flooding leading to widespread damage to infrastructure and settlements in Asia (medium confidence) Adaptation measures include extreme weather exposure reduction via effective land-use planning, selective relocation and structural measures; reduction in the vulnerability of lifeline infrastructure and services (water, energy, waste management, food, biomass, mobility, local ecosystems and telecommunications) and measures to assist vulnerable sectors and households.						Present Near-term (2030-2040) Long-term ^{2°C} (2080-2100) _{4°C}	Very low	Medium	Very high
Increased risk of flood-related deaths, injuries, infectious diseases and mental disorders (<i>medium confidence</i>)	Disaster preparedne coping strategies.	ss including early-w	varning systems and	d local	ANR	6	Present Near-term (2030-2040) Long-term (2080-2100) 2°C (2080-2100) 4°C	Very low	Medium	Very high
Increased risk of heat-related mortality (<i>high confidence</i>) Modified from IPCC 2014	Heat health-warning islands and improve	g systems, urban pla ment of built envirc	anning to reduce he	eat		"	Present Near-term (2030-2040) Long-term ^{2°C} (2080-2100) are	Very low	Medium	Very high
	1	Climatic d	rivers of impa	cts			(, 4°C			_
· I I'	*	217419	6	Ŷ			, F	Potential f	for adaptation duce risk	
Warming Extreme trend temperatur	Drying trend	Extreme precipitation	Damaging cyclone	Storr	n s	iea level	f Risk level wi high adapta	th ation	T Risk level wit current adap	h otation

5. Risks projected in IPCC AR5

Asia Key risk	Adaptation issues and prospects	Climat driver	ic S Timeframe	Risk for current and high adaptation		
Increased risk of drought-related water and food shortage causing malnutrition (<i>high confidence</i>)	Disaster preparedness including early-warning systems and local coping strategies.	 '	Present Near-term (2030-2040) Long-term ^{2°C} (2080-2100) _{4°C}	Very Medium	Very high	
Increased risk of water and vector-borne diseases (medium confidence)	Early-warning systems, vector control programs, water management and sanitation programs.) 🔆	Present Near-term (2030-2040) Long-term ^{2°C} (2080-2100) _{4°C}	Very Medium	Very high	
Exacerbated poverty, inequalities and new vulnerabilities (<i>high confidence</i>)	Insufficient emphasis and limited understanding on urban poverty, interaction between livelihoods, poverty and climate change.] ***	Present Near-term (2030-2040) Long-term 2°C (2080-2100) 4°C	Very Medium	Very high	

Modified from IPCC 2014

	Climatic drivers of impacts							Risk & potential for adaptation		
l	" /	*	ATTE:	6		***		Potential	l for adaptation educe risk	
Warming trend	Extreme temperature	Drying trend	Extreme precipitation	Damaging cyclone	Storm surge	Sea level	R	isk level with igh adaptation	Risk level with current adaptation	

6. Uncertainty and complexity

Fbedeffeirtizediadaptetiiprationgicietistists of some resemplessing on the second second

16

Modified from Pianc 2008

Climate & hydrological change

Impacts

Mekong

Completed

Ongoing

- Several steps on the way towards adaptation strategies have already been taken in both basins
- Similar approaches may be applied for both basins, which implies potential for knowledge exchange

Summary

- Adaptation to climate change and its impact on water related sectors requires transboundary cooperation
- Climate change is already manifest in temperature records of both basins
- Trends in precipitation so far are much more heterogeneous
- Results for future climate change feature equivocally further temperature increases for both basins, heterogeneity of precipitation projections is large for both basins
- Hazards are similar, but resulting risk may be of more substantial nature in the LMB
- For coordinated adaptation, harmonization of both, data analysis and climate modelling within the basin is desirable
- Approach towards adaptation strategy consists of these and further steps
- Several steps on the way towards adaptation strategies have already been taken in both basins
- Similar approaches may be applied for both basins, which implies potential for knowledge exchange
- The uncertainties should not stop decisions being made.

Thank you for your attention!

Bibliography

- Dixon, K.W., Hayhoe, K., Lanzante, J., Stoner, A. & Radhakrishnan 1A. (2013): Examining the stationarity assumption in statistical downscaling of climate projections: Is past performance an indication of future results? Presentation at annual meeting of the American Meteorological Society, Austin, Texas. January 2013.
- Le Quéré, C., Peters, et al. (2013): Global carbon budget 2013, Earth Syst. Sci. Data Discuss., 6, 689-760, doi:10.5194/essdd-6-689-2013, 2013.
- HSG (2012): Internet page "Climate Service Centers"
 <u>http://www.hzg.de/science_and_industrie/klimaberatung/csc_web/011581/index_0011581.html.de</u>
- ICPR (2009): Analysis of the state of knowledge on climate change so far and on the impact of climate change on the water regime in the Rhine watershed. ICPR Report No 174.
- IPCC Intergovernmental Panel on Climate Change (2013): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
- IPCC Intergovernmental Panel on Climate Change (2014): Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
- Knutti, R. & Sedláček, J. (2013): Robustness and uncertainties in the new CMIP5 climate model projections. Nature Clim. Change 3, 369–373.
- MRC CCAI (2014): Review of the Literature on Climate Change and Adaptation in the Water Environment of the Lower Mekong Basin. Unpublished draft.
- Pianc (2008): Waterborne transport, ports and waterways: A review of climate change drivers, impacts, responses and mitigation. EnviCom-Task Group 3 "Climate Change and Navigation". http://www.pianc.org/downloads/envicom/envicom-free-tg3.pdf
- World Bank (2013): Turn Down the Heat: Climate Extremes, Regional Impacts, and the Case for Resilience. A report for the World Bank by the Potsdam Institute for Climate Impact Research and Climate Analytics. Washington, DC: World Bank.

Projects

- BfG (2013): LARSIM-ME: Aufbau eines Wasserhaushaltsmodells Mitteleuropa. -Wolf-Schumann, U. Lingemann, I.; Hunger, M.; Buchholz, O.; Dorp, M.; Elpers, C.; Hellbach, C.; Klein, B.; Krahe, P.; Krauter, G.; Richter, K.-G. Vollmer, S.; Quelle: Simulation hydrologischer Systeme - Wie nah kommen wir der Realität? Beiträge zum 3. Trierer Workshop zur Niederschlag-Abfluss-Modellierung am 17. und 18. September 2012 in Trier. Hrsg.: DWA, S.67-75
- GIZ-MRC Upscaling (2013): Krumsiek/MRC (2013): Climate change adaptation in the Lower Mekong Basin: An overview of activities and trends with a view to lessons learned for project planning and upscaling. Draft.
- UBA DAS (2011): Entwicklung eines Indikatorensystems f
 ür die Deutsche Anpassungsstrategie an den Klimawandel (DAS). http://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/4230.pdf
- ICPR (2009): Analyse des Kenntnisstands zu den bisherigen Veränderungen des Klimas und zu den Auswirkungen der Klimaänderung auf den Wasserhaushalt im Rhein-Einzugsgebiet. Bericht 174. <u>http://www.iksr.org/fileadmin/user_upload/Dokumente_de/Berichte/Bericht_174_d.pdf</u>
- ICPR (2011): Szenarienstudie für das Abflussregime des Rheins. Bericht 188. <u>http://www.iksr.org/fileadmin/user_upload/Dokumente_de/Berichte/188_d.pdf</u>
- ICPR (2013): Aktueller Kenntnisstand über mögliche Auswirkungen von Änderungen des Abflussgeschehens und der Wassertemperatur auf das Ökosystem Rhein und mögliche Handlungsperspektiven. Bericht 204 http://www.iksr.org/fileadmin/user upload/Dokumente de/Berichte/204 d.pdf
- ICPR (2014): Estimation of the effects of climate change scenarios on future Rhine water temperature development - Extensive Version. Bericht 214. http://www.iksr.org/fileadmin/user_upload/Dokumente_de/Taetigkeitsberichte/214_en.pdf

Bibliography

- CH (2014): Anpassung an den Klimawandel in der Schweiz Aktionsplan 2014–2019. Zweiter Teil der Strategie des Bundesrates vom 9. April 2014.
- Bundesregierung (2011): Aktionsplan Anpassung der Deutschen Anpassungsstrategie an den Klimawandel <u>http://www.bmub.bund.de/fileadmin/bmu-</u> import/files/pdfs/allgemein/application/pdf/aktionsplan anpassung klimawandel bf.pdf
- European Climate Adaptation Platform: <u>http://climate-adapt.eea.europa.eu/countries/germany</u>
- MRC Drought: An Initial Drought Risk and Vulnerability Assessment of the Lower Mekong Basin, MRC Drought Management Programme. Draft

WG3: Climate change adaptation

- How to involve China as Upper Mekong Basin Country to MRC?
- There are different interests in the development of different countries in the Mekong Basin; mechanism and procedure for benefit sharing.
- How to make MRC to be efficient partner among other players in water and related resources management, development and planning?
- MRC is not the basin authority, it just river basin commission, what should be best suitable roles and responsibilities of all parties concerned (MRCS, NMCSs, and Line Agencies.
- How MRC can effectively deliver its products useful to the Member countries?

WG3: Climate change adaptation

Climate modelling is applied to assess future climate change

