

Operational ensemble forecasts of floods in Austria

Ch. Reszler, J. Komma, G. Blöschl, D. Gutknecht

Institute for Hydraulic and Water Resources Engineering

Ensemble Workshop, Berne

March 30, 31, 2006

The Kamp catchment

Christian Reszler

Runoff model - structure at pixel scale

Christian Reszler

Operational ensemble forecasts of floods in Austria

Christian Reszler

Updating procedure

- Reduction of uncertainties of flood forecasts
 → using observations of runoff in real time
- Non-linear model Ensemble Kalman Filter (EnKF)
- Observation uncertainties \rightarrow runoff
- Model uncertainties → uncertainties in input (precipitation, evaporation) and its impact on the soil moisture state
- To estimate antecedent soil moisture

Error analyses

5 events - gauge Zwettl/Kamp (622 km²)

Christian Reszler

Error analyses

5 events - gauge Rastenberg/Purzelkamp (95 km²)

Christian Reszler

Error analyses

5 events - gauge Frauenhofen/Taffa (140 km²)

Christian Reszler

Ensembles

 using precipitation ensembles of Central Institute for Meteorology: combination of ECMWF realisations and LA-model ALADIN

(see presentation of Georg Pistotnik)

- downscaling of precipitation fields to a 1x1km² grid
- assuming main forecast uncertainty is due to uncertainties in precipitation forecasts
 → no perturbation of state variables or parameters of hydrological model

Ensemble spread

for ∆t = 24h, 36h, 48h

Zwettl/Kamp July 9, 2005 00:00

Christian Reszler

Ensemble spread

for ∆t = **24h**, **36h**, **48h**

Zwettl/Kamp July 10, 2005 00:00

Operational ensemble forecasts of floods in Austria

Christian Reszler

Error distributions

Gauge Zwettl/Kamp (622 km²)

Assumptions:

- ensemble represents all error sources
- all ensemble members equally probable

Christian Reszler

Error distributions

Gauge Zwettl/Kamp (622 km²)

Assumptions:

- ensemble represents all error sources
- all ensemble members equally probable

Error distributions

Gauge Zwettl/Kamp (622 km²)

Assumptions:

- ensemble represents all error sources
- all ensemble members equally probable

Christian Reszler

Percentage of forecasts, for which ensemble range overlaps with observed runoff

Additional uncertainties: - small scale precipitation

- runoff model structure and parameters

Christian Reszler

Conclusions

- Forecast accuracy depends on response time of catchment
- Real time updating of soil moisture based on Ensemble Kalman Filter using runoff data improves forecasts
- Ensembles as indicators of possible flood occurrence
 → early flood warning
- Probabilistic interpretation of ensembles comparison with error distributions
- Operational as of January 1, 2006 ... gaining experience with the forecasting system

THANK YOU !

Christian Reszler